[原创] 用人话解释机器学习中的Logistic Regression(逻辑回归)

友情提示:如果觉得页面中的公式显示太小,可以放大页面查看(不会失真)。

Logistic Regression(或Logit Regression),即逻辑回归,简记为LR,是机器学习领域的一种极为常用的算法/方法/模型。
你能从网上搜到十万篇讲述Logistic Regression的文章,也不多我这一篇,但是,就像我写过的最优化系列文章一样,我仍然试图用“人话”来再解释一遍——可能不专业,但是容易看得懂。那些一上来就是几页数学公式什么的最讨厌了,不是吗?
所以这篇文章是写给完全没听说过Logistic Regression的人看的,我相信看完这篇文章,你差不多可以从无到有,把逻辑回归应用到实践中去。

阅读更多

[原创] 再谈 共轭方向法/Conjugate Direction Method In Optimization

共轭方向法是介于最速下降法牛顿法之间的一种存在——它的收敛速度(二阶收敛)比最速下降法(线性收敛)快,同时它的计算量又比牛顿法要小,因此它的存在是有意义的。

阅读更多

[原创] 再谈 牛顿法/Newton's Method In Optimization

牛顿法是最优化领域的经典算法,它在寻优的过程中,使用了目标函数的二阶导数信息,具体说来就是:用迭代点的梯度和二阶导数对目标函数进行二次逼近,把二次函数的极小点作为新的迭代点,不断重复此过程,直到找到最优点。

阅读更多

[原创] 再谈 梯度下降法/最速下降法/Gradient descent/Steepest Descent

当今世界,深度学习应用已经渗透到了我们生活的方方面面,深度学习技术背后的核心问题是最优化(Optimization)。最优化是应用数学的一个分支,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。
梯度下降法(Gradient descent,又称最速下降法/Steepest descent),是无约束最优化领域中历史最悠久、最简单的算法,单独就这种算法来看,属于早就“过时”了的一种算法。但是,它的理念是其他某些算法的组成部分,或者说在其他某些算法中,也有梯度下降法的“影子”。例如,各种深度学习库都会使用SGD(Stochastic Gradient Descent,随机梯度下降)或变种作为其优化算法。
今天我们就再来回顾一下梯度下降法的基础知识。

阅读更多

[原创]使用一维搜索(line search)的算法的收敛性

在最优化领域中,有一类使用一维搜索(line search)的算法,例如牛顿法等。这类算法采用的是 确定搜索方向→进行一维搜索→调整搜索方向→进行一维搜索 的迭代过程来求解。那么,这类算法应该满足什么条件的时候才能收敛?本文将略为讨论一下。请务必看清本文的标题:不是讨论line search的收敛性,而是讨论使用line search的算法的收敛性。

阅读更多

[原创]信赖域(Trust Region)算法是怎么一回事

如果你关心最优化(Optimization),你一定听说过一类叫作“信赖域(Trust Region)”的算法。在本文中,我将讲述一下信赖域算法与一维搜索的区别、联系,以及信赖域算法的数学思想,实现过程。

阅读更多

[原创]用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则

line search(一维搜索,或线搜索)是最优化(Optimization)算法中的一个基础步骤/算法。它可以分为精确的一维搜索以及不精确的一维搜索两大类。
在本文中,我想用“人话”解释一下不精确的一维搜索的两大准则:Armijo-Goldstein准则 & Wolfe-Powell准则。
之所以这样说,是因为我读到的所有最优化的书或资料,从来没有一个可以用初学者都能理解的方式来解释这两个准则,它们要么是长篇大论、把一堆数学公式丢给你去琢磨;要么是简短省略、直接略过了解释的步骤就一句话跨越千山万水得出了结论。
每当看到这些书的时候,我脑子里就一个反应:你们就不能写人话吗?

阅读更多

[原创]漫谈line search中的Fibonacci搜索与黄金比例搜索

在一维搜索(line search)中,Fibonacci搜索与黄金比例搜索是一对“亲兄弟”,因为它们都是用分割区间的方法来求极小值,所以过程是相似的。本文就随意聊一下它们的区别与联系。

阅读更多

[原创]一维搜索中的划界(Bracket)算法

很多最优化算法需要用到一维搜索(line search)子算法,而在众多的一维搜索算法中,大多数都要求函数被限制在一个单峰区间内,也就是说,在进行一维搜索的区间内,函数是一个单峰函数。尽管有一些改进的一维搜索算法(例如 H\ddot opfinger 建议的一种改进过的黄金搜索算法)可以处理函数非单峰的情况,但是,在没有确定函数在一个区间内是单峰的之前,即使在搜索过程中,函数值持续减小,我们也不能说极小值是一定存在的,因此,找出一个区间,在此区间之内使函数是单峰的,这个过程是必需的(我更倾向于接受这种观点)。这个过程就叫作划界Bracket)。Bracket这个单词是括号的意思,很形象——用括号包住一个范围,就是划界。在某些书中,划界算法也被称为进退法

阅读更多

[原创]最优化/Optimization文章合集

最优化(Optimization)是应用数学的一个分支,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。我一直对最优化比较感兴趣,所以写过一些相关的笔记,可能有不正确的地方,但请学术派、技术流们多多包涵。

➤ 拟牛顿法/Quasi-Newton,DFP算法/Davidon-Fletcher-Powell,及BFGS算法/Broyden-Fletcher-Goldfarb-Shanno

➤ 最速下降法/steepest descent,牛顿法/newton,共轭方向法/conjugate direction,共轭梯度法/conjugate gradient 及其他

➤ Ridders求导算法

➤ 选主元的高斯-约当(Gauss-Jordan)消元法解线性方程组/求逆矩阵
文章来源:http://www.codelast.com/
➤ 关于 最优化/Optimization 的一些概念解释

➤ 最小二乘的理论依据

➤ Powell共轭方向集方法(Powell's Conjugate Direction Method)的实现

阅读更多

[原创]拟牛顿法/Quasi-Newton,DFP算法/Davidon-Fletcher-Powell,及BFGS算法/Broyden-Fletcher-Goldfarb-Shanno

 

在最优化领域,有几个你绝对不能忽略的关键词:拟牛顿、DFP、BFGS。名字很怪,但是非常著名。下面会依次地说明它们分别“是什么”,“有什么用” 以及 “怎么来的”。

但是在进入正文之前,还是要先提到一个概念上的区别,否则将影响大家的理解:其实DFP算法、BFGS算法都属于拟牛顿法,即,DFP、BFGS都分别是一种拟牛顿法。

阅读更多

[原创]最速下降法/steepest descent,牛顿法/newton,共轭方向法/conjugate direction,共轭梯度法/conjugate gradient 及其他

 

在最优化的领域中,这“法”那“法”无穷多,而且还“长得像”——名字相似的多,有时让人觉得很迷惑。

在自变量为一维的情况下,也就是自变量可以视为一个标量,此时,一个实数就可以代表它了,这个时候,如果要改变自变量的值,则其要么减小,要么增加,也就是“非左即右“,所以,说到“自变量在某个方向上移动”这个概念的时候,它并不是十分明显;而在自变量为n(n≥2)维的情况下,这个概念就有用了起来:假设自变量X为3维的,即每一个X是(x1, x2, x3)这样的一个点,其中x1,x2和x3分别是一个实数,即标量。那么,如果要改变X,即将一个点移动到另一个点,你怎么移动?可以选择的方法太多了,例如,我们可以令x1,x2不变,仅使x3改变,也可以令x1,x3不变,仅使x2改变,等等。这些做法也就使得我们有了”方向“的概念,因为在3维空间中,一个点移动到另一个点,并不是像一维情况下那样“非左即右”的,而是有“方向”的。在这样的情况下,找到一个合适的”方向“,使得从一个点移动到另一个点的时候,函数值的改变最符合我们预定的要求(例如,函数值要减小到什么程度),就变得十分有必要了。

阅读更多

[原创]选主元的高斯-约当(Gauss-Jordan)消元法解线性方程组/求逆矩阵

 

选主元的高斯-约当(Gauss-Jordan)消元法在很多地方都会用到,例如求一个矩阵的逆矩阵、解线性方程组(插一句:LM算法求解的一个步骤),等等。它的速度不是最快的,但是它非常稳定来自网上的定义:一个计算方法,如果在使用此方法的计算过程中,舍入误差得到控制,对计算结果影响较小,称此方法为数值稳定的,同时它的求解过程也比较清晰明了,因而人们使用较多。下面我就用一个例子来告诉你Gauss-Jordan法的求解过程吧。顺便再提及一些注意事项以及扩展话题。

对本文中所提到的“主元”等概念的解释,可以参考此链接

阅读更多