以下是我曾在学习“最优化”理论与实践中遇到的一些概念,我刚开始学的时候,有些东西看了很多遍都还觉得很别扭、晦涩难懂,在比较清楚地理解了之后,我打算把它们写下来,并试图以很通俗、但可能不十分严谨的方式解释、呈现出来,以使一部分正在这些概念中挣扎的人能有所解脱。
以下是我曾在学习“最优化”理论与实践中遇到的一些概念,我刚开始学的时候,有些东西看了很多遍都还觉得很别扭、晦涩难懂,在比较清楚地理解了之后,我打算把它们写下来,并试图以很通俗、但可能不十分严谨的方式解释、呈现出来,以使一部分正在这些概念中挣扎的人能有所解脱。
在做数据建模或者曲线拟合的时候,我们通常会用到最小二乘法。
实现Powell算法的基础之一:你需要至少先掌握一种一维极值搜索算法。比较流行的是Golden Ratio Search(黄金比例搜索法),Fibonacci Search(斐波纳契搜索法),等等。
LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合。
LM算法的实现并不算难,它的关键是用模型函数 对待估参数向量 在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点。LM算法属于一种“信赖域法”——所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是要求一个函数的极小值,每一步迭代中,都要求目标函数值是下降的,而信赖域法,顾名思义,就是从初始点开始,先假设一个可以信赖的最大位移 ,然后在以当前点为中心,以 为半径的区域内,通过寻找目标函数的一个近似函数(二次的)的最优点,来求解得到真正的位移。在得到了位移之后,再计算目标函数值,如果其使目标函数值的下降满足了一定条件,那么就说明这个位移是可靠的,则继续按此规则迭代计算下去;如果其不能使目标函数值的下降满足一定的条件,则应减小信赖域的范围,再重新求解。
事实上,你从所有可以找到的资料里看到的LM算法的说明,都可以找到类似于“如果目标函数值增大,则调整某系数再继续求解;如果目标函数值减小,则调整某系数再继续求解”的迭代过程,这种过程与上面所说的信赖域法是非常相似的,所以说LM算法是一种信赖域法。